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Density and Probability Function Estimation

The notation and the basic approaches developed in this section are
intended to provide the foundation for the remaining ones, and these
concepts will be reused throughout this review. More detail will there-
fore be presented here than elsewhere, so a solid grasp of key notions
such as “generalized product kernels,” kernels for categorical data,
data-driven bandwidth selection and so forth ought to be helpful when
digesting the material that follows.

Readers will no doubt be intimately familiar with two popular non-
parametric estimators, namely the histogram and frequency estimators.
The histogram is a non-smooth nonparametric method that can be used
to estimate the probability density function (PDF) of a continuous vari-
able. The frequency probability estimator is a non-smooth nonparamet-
ric method used to estimate probabilities of discrete events. Though
non-smooth methods can be powerful indeed, they hawve their draw-
backs. For an in-depth treatment of kernel density estimation we direct
the interested reader to the wonderful reviews by |Silverman| ({1986
and [Scott| (1992}, while for mixed data density estimation we direct
the reader to |Li and Racine| (2007al) and the references therein. We
shall begin with an illustrative parametric example.




These observations {(X;,Y;)} (1 < i < n) are typically assumed as data for
constructing models. X; is a vector (sometimes a scalar) and Y] is a scalar. The
equation below is considered to generate the data.

y=m(x)+¢ (L1)

where m(-) is a nonaccidental function for describing the intrinsic behavior of y.
Observing (x, y) provides {(X;,Y;)}. €is error (i.e., model error), which is usually
assumed to be distributed randomly around ().0. Then, the data {(X;,Y;)} (1 € <
n) created using eq(1.1) are depicted as

Y =m(X;) + €, (1.2)

where {¢€;} are realizations of €, Estimation of the regression equation (regression
function) (the term “regression model” is also used) aims at obtaining a useful m/(-).
This procedure is sometimes simply called “regressing.” The resultant regression
equation is identified as /n(-). To emphasize the purpose of prediction, a regression
gquation can also be a “prediction equation.” The function 7i2( - ) is usually considered
effective if it has been derived by extracting as many smooth movements in the data
as possible. Therefore, regression 1s conventionally designed to create i (-) which
allows the absolute values of {¢;} to take on average small values on the condition
that /() is a smooth function.




The variable x is called a predictor. It is sometimes identified as an “independent
variable.” The term may be inappropriate because the word “independent™ is mislead-
ing; x could depend on something, and the elements of x could be dependent on each
other. The term “explanatory variable” might also invite a misunderstanding; x does
not always explain y. The other alternatives, “regressor variable™” and “regressor.”
have not yet become common terms.

The variable y is named the target variable (object variable). The term “dependent
variable™ is also possible, but the word “dependent” may be misleading; y does not
always depend completely on x. “Explained variable™ presents a similar problem to
explanatory variable. “Predictand” could be confused with predictor and predictant.
The terms “response variable (response)” and “regressand” have not been widely
accepted yet.

The term regression originates from the phenomenon that a repetition of genetic
inheritance allows body height and other such factors to become close to the average.
However, the term may also carry the implication that regression recovers an original
form by eliminating errors. In truth, 722(-) should not be considered an approximation
of the real image of data because m(-) often depends on the particular goal even
when the same data are utilized. We should regard :(-) as a functional relationship
that was obtained from a set of data for our purpose. In this respect, “modeling” is
the most appropriate expression. The meaning of “model,” however, is too broad to
describe something like eq(1.1) precisely, and the term regression is deeply rooted in
statistics. Therefore, this book uses the term “regression equation’™ and the result of
the formulation of data in a more general form than eq(1.1) is termed a “model.” The
word “model” is to be used on occasions when a term containing “model” is widely
used (e.g., “additive model™).




On the other hand, estimation of the probability density function (or simply, the
density function) indicates that when {X;} (1 <i < n) (X; is a datum (a vector),

n 1s the number of data) are given, analysts estimate a probability density function
(f()) which describes the distribution of {X;} appropriately on the basis of the
assumption that {X;} are realizations of f(x). When f() is considered to be a
smooth function, this estimation is carried out to derive a smooth f (+). In addition,

oo o ST . '
I o I . J(x)dx = 1 should always be at least approximately correct; it must

be satisfied rigidly on some occasions. f(x) > ( is also a typical condition. While
a probability density function 1s significantly different from a regression equation
based on eq(1.2) from a number of points of view, it shares acommon property in that
they are both results of formulation by extracting inherent characteristics of data for a
specific purpose, and both use similar concepts and techniques. These commonalities
allow a probability density function to be regarded as a regression equation or a model.




The estimation of the regression equation of eq(1.2) and a probability density func-
tion usually requires that the resultant function (7i2(X;) and f (x)) be smooth, and
much experience justifies this requirement. Regressions using eq(1.1) are categorized
into parametric regression and nonparametric regression; the distinction is clarified
later in this chapter. Similarly, the methods of obtaining a probability density func-
tion are classified into parametric probability density function estimation (parametric
density function estimation) and nonparametric probability density function estima-
tion (nonparametric density function estimation). Estimation of the nonparametric
probability density function 1s treated as a category of nonparametric regression in
this book because the techniques for estimating nonparametric probability density
described here are analogous to those based on eq(1.1).

Smoothing is the term for relatively simple nonparametric regression; when it is
apparent that the values of data or the distribution of data are being “ironed out,” the
procedure 1s called smoothing. The establishment of the field of smoothing originates
with the fact that techniques categorized as smoothing are beneficial data analysis
methods when considered 1n 1solation, and the historical circumstance that the evo-
lution of smoothing has become integrated into the development of nonparametric
regression, which forms a significant realm within the field of statistical data analysis.
Smoothing should not, however, be defined as simple nonparametric regression be-
cause parametric regression is also used for smoothing. Hence, smoothing is divided
into that by parametric regression and that by nonparametric regression in the strict
sense.
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Figurel.1 Venndiagramtoshow the relationship of parametric regression and nonparametric
regression. This relationship is not necessarily a conclusively established one, and therefore
other mappings may be reported in the literature.

Nonparametric
regression




1.2 ARE THE MOVING AVERAGE AND FOURIER SERIES
SUFFICIENTLY USEFUL?

Figure 1.2 illustrates the monthly average exchange rate of US dollar and yen from
February 1987 through May 1999. A long term trend with a superimposed fine
oscillation forms the shape; the fine oscillation is the short term wvariation. The
subtraction of fine oscillation (i.e., the short term variation) from the longitudinal data
gives the long term variation. The two types of variations reflect different mechanisms
in economic change and hence the separation of the data into these two trends allows
a clear understanding. It is reasonable that a long term trend should be considered
as a gentle curve extracted from data, and the subtraction of this trend from the data
gives the short term variation. Such an extraction of long term variation is one role

of smoothing.
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Figurel.2 Monthly average exchange rate of US dollar and yen from February 1987 through
May 1999. Numbers on the x-axis indicate months beginning at February 1987.




The moving average is the most widely used tool for eliciting a smooth trend by
removing fine oscillation from the data. Figurel.3(left) is an example of the result of
applying the moving average to the data; the curve is drawn by connecting the values
of the moving averages. When data are represented as {Y;} (1 < i < n) (n is the
number of data), the relationship between the line (s7(¢)) in figure 1.3(left) and the
data is written as

Y = m(i) + €, (1.3)

where (%) is a smooth function with a variable (7); it indicates a long term variation.
¢; is random; the average of {€;} in a certain range of ¢ leads to a value close to
zero. Since the solid line in figure 1.3(left) captures the rough trend of the data, this
line is a strong candidate for 17:(¢). This line, however, includes peculiar behaviors
as a result of smoothing the data. Figure 1.3(right), which shows the first 80 data
and corresponding 12(), makes this problem more apparent. This 172(¢) derived from
the moving average is not acceptable as a rough sketch of the variation of exchange
rate in this period. A local maximal value is observed where the data imply a local
minimum, and vice versa. This (i) cannot be considered as a smooth trend that
is extracted from the data. A problem of this kind posed by the moving average is
also treated in Chapter 2. Figure 1.3(right) in itself gives a clear confirmation that we
should refrain from utilizing the results of the moving average incautiously as a basis
for an important conclusion.
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Figure 1.3 Example of the result of moving average using the data in figure 1.2, The result
of extraction of the first 80 data from figure 1.3 (left) and corresponding 1 (1) (right).
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Figure 1.4 A smooth line (#7(2)) that is the sum of longer waves. Waves are obtained by
the decomposition into sine waves and cosine waves (left). The result of extraction of the first
80 data from those in figure 1.4(left) and corresponding r(2) (right).
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Figure 1.5 A smooth line (+7(i)) that is the sum of longer waves. Waves are obtained by
the decomposition into sine waves and cosine waves (the number of waves is greater than that
in figure 1.4(right)), (left). The result of extraction of the first 80 data from those in figure
l.4(left) and corresponding 72(%) (right).
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Figure 1.6 Curve obtained using smoothing spline with the data shown in figure 1.2 (left).
First 80 data of those in figure 1.6(left) and the corresponding r72(2) (right).
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Figure 1.7 Curve obtained using the smoothing spline with the data shown in figure 1.2 (the
degree of smoothness is larger than that in figure 1.6(left)), (left). First 80 data of those in
figure 1.7(left) and the corresponding 77 (2) (right).




Density Estimation

The estimation of probability density functions (PDFs) and cumulative
distribution functions (CDF's) are cornerstones of applied data analysis
in the social sciences. Testing for the equality of two distributions (or
moments thereof) is perhaps the most basic test in all of applied data
analysis. Economists, for instance, devote a great deal of attention to
the study of income distributions and how they vary across regions and
over time. Though the PDF and CDF are often the objects of direct
interest, their estimation also serves as an important building block
for other objects being modeled such as a conditional mean (i.e., a
“regression function”), which may be directly modeled using nonpara-
metric or semiparametric methods (a conditional mean is a function of
a conditional PDF, which is itself a ratio of unconditional PDFs). Af-
ter mastering the principles underlying the nonparametric estimation
of a PDF, the nonparametric estimation of the workhorse of applied
data analysis, the conditional mean function considered in Chapter 2,
progresses in a fairly straightforward manner. Careful study of the ap-
proaches developed in Chapter 1 will be most helpful for understanding
material presented in later chapters.




1.1 TUnivariate Density Estimation

To best appreciate why one might consider using nonparametric meth-

ods to estimate a PDF, we begin with an illustrative example, the
parametric estimation of a PDF.

Example 1.1. Suppose X1, X2,..., Xp represent independent and
identically distributed (i.i.d.) draws from a normal distribution with
mean p and variance o2. We wish to estimate the normal PDF f(x).

By assumption, f(x) has a known parametric functional form (i.e.,
univariate normal) given by f(z) = (2mo?) Y2 exp [—3(z - w2 /o],
where the mean u = BE(X) and variance 0> = E[(X —E(X))?] = var(X)
are the only unknown parameters to be estimated. One could estimate
i and o2 by the method of mazimum likelihood as follows. Under the
ii.d. assumption, the joint PDF of (X1,...,Xy) is simply the product
of the univariate PDFs, which may be wrilten as

(x;—)? 1

1
Xi,...,Xp) = ———e 202 =
f(Xy, n) !:ll =—* (2mo2)n/z¢

- 2_,,1.‘2 Z:;l (Xi—.‘-'*)z .

Conditional upon the observed sample and taking the logarithm, this
gives us the log-likelihood function

‘C‘(ﬂ}dz) = In f(Xla R Xn;.u".r Uj)

L _r EEITOT TN T o VY
= —5 In(27) — 5o’ — o ;(Xz )2




The method of mazimum likelihood proceeds by choosing those param-
eters that make it most likely that we observed the sample at hand
given our distributional assumption. Thus, the likelihood function (or
o monotonic transformation thereof, e.q., In) expresses the plausibility
of different values of p and o2 given the observed sample. We then
mazimize the likelihood function with respect to these two unknown pa-
rameters.

| T"he necessary first order conditions for a mazimization of the log- |
ltkelihood function are OL(u,0?)/0u =0 and 0L (u,0%)/00* = 0. Soly-

ing these first order conditions for the two unknown parameters 1 and
o? yields

Tl
ﬁ=%ZXi and &2=£Z(Xi—ﬁ)z.

1=1 1=1




i and % above are the mazimum likelihood estimators of u and o?,
respectively, and the resulting estimator of f(z) is

: A mﬁ)z-
T)=—=exp|—=|—| |.




We now discuss how to obtain an estimator of the CDF of X, which
we denote by F(z). The CDF is defined as

F(z)=PX < xl.

With 1.i.d. data X;,...,X, (i.e., random draws from the distribution
F(-)), one can estimate F(z) by

Fo(z) = i{ #of Xi’'s <z }. (1.2)

Equation (1.2) has a nice intuitive interpretation. Going back to our
coin-flip example, if a coin is such that the probability of obtaining a
head when we flip it equals F'(z) (F(x) is unknown), and if we treat the
collection of data X1, ..., X, as flipping a coin n times and we say that a
head occurs on the i*® trial if X; < z, then P(H) = P(X; < z) = F(z).
The familiar frequency estimator of P(H) is equal to the number of
heads divided by the number of trials:

R of heads
p(H) =1 :

_ %{ fof Xps<x)=F(z).  (L3)




Now we take up the question of how to estimate a PDF f(z) without
making parametric presumptions about it’s functional form. From the

definition of f(z) we have!

y |
flz) = -&EF(x). (1.4)

From (1.2) and (1.4), an obvious estimator of f(z) is’
_ Fu(z+h) - Fy(z - h)
B 2h ’

where h is a small positive increment.
By substituting (1.2) into (1.5), we obtain

f(z) (15)

flz) = +2nih{ # of Xq,..., X, falling in the interval [z — h,z +h] }.
(L6)

S - e




Thanks for Listening




